15.1-15.2 Intro to double Integrals

In all of ch. 15, you are given two things:
1.A surface: $z=f(x, y)$
2. A region drawn on the $x y$-plane.

Example: Let's estimate the volume

1. under $z=f(x, y)=x+2 y^{2}$
2. above $\mathrm{R}=[0,2] \times[0,4]$

$$
=\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 4\}
$$

To estimate:

- Break R into m columns and n rows
- Over each sub-region, use function to get a rectangular box.
- Add up rectangular box volumes.

Notes and Observations

Formally,

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}, y_{i j}\right) \Delta A
$$

$=`$ signed' volume between $f(x, y)$ and R.
If $f(x, y)$ is above the $x y$-plane it is positive. If $f(x, y)$ is below the $x y$-plane it is negative.

$$
\begin{aligned}
& \Delta A=\text { area of base }=\Delta x \Delta y=\Delta y \Delta x \\
& \begin{array}{l}
f\left(x_{i j}, y_{i j}\right) \Delta A=\text { (height)(area of base) } \\
\quad \text { = volume of one approximating box }
\end{array}
\end{aligned}
$$

Units of $\iint_{R} f(x, y) d A$ are
(units of $f(x, y)$)(units of x)(units of y)

Iterated Integrals

If you fix \boldsymbol{x} : The area under this curve is

From Math 125,
$\operatorname{Vol}=\int_{a}^{b} \operatorname{Area}(\mathrm{x}) d x=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \quad \operatorname{Vol}=\int_{c}^{d} \operatorname{Area}(y) d y=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y$

If you fix y : The area under this curve

$\int_{a}^{b} f(x, y) d x=$| "cross sectional area |
| :---: |
| under the surface at |
| this fixed y value" |

號

Quick Example: Evaluate
(a) $\int_{2}^{6}\left(\int_{1}^{8} y d x\right) d y$
(b) $\int_{2}^{6}\left(\int_{1}^{8} 1 d x\right) d y$

Examples (like 15.2 HW):

1. Find the volume under
$z=x+2 y^{2}$ and
above $0 \leq x \leq 2, \quad 0 \leq y \leq 4$
2. $\int_{0}^{3} \int_{0}^{1} 2 x y \sqrt{x^{2}+y^{2}} d x d y$

15.2 Double Integrals over General Regions

In 15.2, we discuss regions, R, other than rectangles.

The surface $z=x+3 y^{2}$ over the rectangular region $R=[0,1] \times[0,3]$

The surface $z=x+3 y^{2}$ over the triangular region with corners $(x, y)=(0,0),(1,0)$, and $(1,3)$.

The surface $\mathrm{z}=\mathrm{x}+1$ over the region bounded by $y=x$ and $y=x^{2}$.

The surface $z=\sin (y) / y$ over the triangular region with corners at $(0,0),(0, \pi / 2),(\pi / 2, \pi / 2)$.

Examples:

1. Let D be the triangular region in the xy-plane with corners $(0,0),(1,0),(1,3)$.

Evaluate $\iint_{D} x+3 y^{2} d A$
2. Find the volume of the solid bounded by the surfaces $z=x+1, y=x^{2}$, $y=2 x, z=0$.
3. Draw the region of integration for

$$
\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin (y)}{y} d y d x
$$

then switch the order of integration.
4. Switch the order of integration for

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin \left(y^{3}\right) d y d x
$$

Setting up a problem given in "words": Examples (directly from HW):
 1. Find integrand
 Solve for " z " anywhere you see it.
 HW 15.2: Find the volume enclosed by
 $z=4 x^{2}+4 y^{2}$ and the planes $x=0, y=2$, If there are two z's, then set up two $y=x$, and $z=0$. double integrals (subtract at end).

2. Region?

Graph the region in the $x y$-plane.
a) Graph given x and y constraints.
b) And find the $x y$-curves where the surfaces (the z's) intersect.

HW 15.3:

Find the volume below $\mathrm{z}=18-2 \mathrm{x}^{2}-2 \mathrm{y}^{2}$ and above the xy-plane.

HW 15.3:

Find the volume enclosed by $-x^{2}-y^{2}+z^{2}=22$ and $z=5$.

HW 15.3:

Find the volume above the upper cone
$z=\sqrt{x^{2}+y^{2}}$ and
below $x^{2}+y^{2}+z^{2}=81$

Volume enclosed by

$$
-x^{2}-y^{2}+z^{2}=22 \text { and } z=5
$$

The volume above the upper cone
$z=\sqrt{x^{2}+y^{2}}$ and below $x^{2}+y^{2}+z^{2}=81$

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Describe the surface (what is z ?):

Slope in y-direction $=0$
Slope in x-direction $=-4 / 10=-0.4$
Also the plane goes through ($0,0,0$)
Thus, the plane that describes the bottom of the pool is: $\quad \mathbf{z}=\mathbf{- 0 . 4 x}+\mathbf{0 y}$
2. Describe the region in $x y$-plane:

The line on the right goes through $(20,0)$ and $(25,25)$, so it has slope $=5$ and it is given by the equation

$$
\begin{array}{ll}
& y=5(x-20)=5 x-100 \\
\text { or } \quad & x=(y+100) / 5=1 / 5 y+20
\end{array}
$$

The best way to describe this region is by thinking of it as a left-right region.
On the left, we always have $x=0$
On the right, we always have $x=1 / 5 y+20$
Therefore, we have

$$
\int_{0}^{25}\left(\int_{0}^{\frac{1}{5} y+20}-0.4 x d x\right) d y=-741 . \overline{6} \mathrm{ft}^{3}
$$

